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Abstract
Detailed lattice relaxation studies of the excited nsnp states of Tl+ and In+ in
KCl have shown that the calculated Stokes shift of the 6s–6p transition of Tl+ is
most sensitive to the accuracy of the lattice relaxation around the substituted ion.
This is a result of the strong cancellation between the influence of the spin–orbit
interaction and the lattice relaxation on the 6s6p level positions. The results
were calculated with a HF–LCAO embedded cluster method as well as with a
DFT based supercell approach. Unexpectedly the supercell method completely
fails for thallium in predicting the Stokes shift. Using the embedded cluster
method, a value of 0.706 eV was found for the shift for thallium and 1.24 eV for
indium. The experimental values are 0.88 and 1.44 eV respectively. It was also
clearly established that the temperature dependence of the decay time of the
main emission line of thallium is directly related to the Jahn–Teller distortion by
which the trapping 3A1u level approaches the emitting 3T1u level. For indium
this does not play a role because of the much smaller spin–orbit interaction.

1. Introduction

Recently the Stokes shift was studied for cerium in LiBaF3 [1] and in LaCl3 [2]. The remarkable
fact was found that the local geometry of the relaxed excited state (5d for Ce3+) was quite
different from that of the ground state, showing a profound influence of excited states of ions
on the local lattice structure. A second result of these studies was the extent of the relaxing
region. If this is chosen too small there is almost no change in geometry and the Stokes shift
comes out much too small.

In this work we address the more complicated ns2–nsnp transition, on which a rich
literature exists [3–5]. The complex absorption and emission spectra of these systems have
been explained to a large extent, but mainly qualitatively. However a convincing explanation
of the experimental results has never been given.

In this work the emphasis is on quantitative aspects of the physics of the main emission
line of Tl+ and In+ in KCl.
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The nsnp configuration for the free Tl+ or In+ ion has 12 states grouped into four levels.
These levels are 3P0, 3P1, 3P2 and 1P1. The second and fourth are mixed by spin–orbit
interaction. In the solid KCl (not distorted) the third level will split in two but this is almost
never observed. The absorption lines are transitions to all levels except the first and are called
A, B and C lines respectively. The single emission line observed comes from the 3P1 level. In
the solid this is the 3T1u level. We will maintain the nomenclature of the undistorted lattice
also when the Jahn–Teller distortion breaks the symmetry.

Now the complication is that after absorption to the 3T1u state, the interaction with phonons
will cause a non-radiative transition to the 3A1u (3P0) trapping level, which cannot decay to the
ground state. In this state the system will relax to a local geometry of tetragonal symmetry by
the Jahn–Teller effect. Because of this, the relaxed 3T1u state will become almost degenerate
with the 3A1u state and the slow emission component arises from thermal excitation from 3A1u

to 3T1u.
There is also a small fraction of the dopant ions, which remain in the 3T1u state and the

lattice will relax to a tetragonal distortion. This gives the fast component in the emission,
which we do not consider here.

The actual distortion of the lattice was calculated from first principles and the Stokes shift
was found from the energy changes of the relaxed excited 3T1u state and the 1A1g(6s2) ground
state. Additionally, the distance between the levels 3A1u and 3T1u in the distorted geometry
will give an estimate of the temperature dependence of the transition time of the emission line
using the exponential expression for the emission from a trap [6].

We have chosen thallium because the spin–orbit interaction in the 6s6p states is so large
(λ ∼ 8000 cm−1) that the lattice relaxation in the 6s6p states of interest is substantially reduced.
This is because the lattice relaxation partially quenches the effect of the spin–orbit interaction.
This interaction lowers the energy of the 3A1u and 3T1u states and so this lowering is reduced
by relaxation.

It is also the most frequently investigated system with very detailed experimental data.
With KCl as host, the emission characteristics are not too complicated and the relaxation model
can be kept simple.

Indium is interesting because the relaxation is expected to be very similar to that of thallium
but the Stokes shift is much larger. Furthermore the decay time of the emission line of indium
in KCl shows hardly any temperature dependence. This different behaviour should be related
to the much smaller spin–orbit interaction.

2. Theoretical models

The basic theoretical approach is essentially the same as that of our earlier work on LiBaF3:Ce
and LaCl3:Ce. For the purpose of comparison two methods were used. The first is the widely
used supercell approach, where in a cell of 3×3×3 lattice units one potassium ion is replaced
by the dopant ion. The electronic structure was calculated in the spin polarized DFT formalism.

The second method is an ionic cluster approach where the Tl+ (or In+) ion is part of a
molecular fragment (cluster) of the lattice. The electronic structure of the ns2 ground state and
the triplet nsnp excited state was calculated within the UHF–LCAO framework. The cluster
has to be embedded in the crystal. For this we have used a sophisticated embedding procedure,
in which the representation of the crystal outside the cluster can include both polarization and
relaxation of the lattice ions. We will give more details further on.

The relaxation of the chosen structures is the key problem. For the supercell a molecular
dynamics calculation is done where all ions in the supercell relax to equilibrium positions
with a fixed size of the supercell. The main problem is the influence of the periodic boundary
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conditions, which cancel all multipole moments of the supercell, and also restricts the relaxation
of the outer region. Therefore the supercell should be as large as possible.

For the embedded cluster method we have relaxation of the cluster and of the embedding
surroundings. Particularly the last part requires special attention. Details will be given below.

2.1. Spin–orbit interaction

The program packages we have used for the relaxation studies do not include spin–orbit
interaction and so no spectroscopic levels are obtained. The levels arising from the nsnp
configurations had to be calculated a posteriori using a parameter model. In order to check the
limitations of this approach the unrelaxed geometry was also handled with a contemporary four-
component Dirac–Fock quantum chemical cluster program, where the spin–orbit interaction
is included in the (Dirac) Hamiltonian and the spectroscopy of the nsnp levels is well treated.

2.2. Program resources and theoretical formalism

The embedded cluster calculations were done with the DCLUSTER99 [7] program which is a
combination of the classical GULP [8] code for the embedding procedure and the well known
chemical code Gaussian 98 [9], which treats the cluster of ions quantum chemically. The
interface was written by Sushkov et al [10].

The cluster of ions was chosen to consist of an MCl12K18 fragment. M is the dopant ion
and it is surrounded by six nearest neighbour chlorine ions at half the lattice constant a0 and
12 next nearest neighbour potassium ions at 0.5

√
2a0. Intentionally six potassium ions at a0

and six chlorine ions at 1.5a0, all on the x, y and z axes, were added. This was done to obtain
a more realistic relaxation in the triplet state, which is expected to give an elongation along
the z axis and a contraction in the x and y directions because of the Jahn–Teller effect.

The embedding procedure models the environment of the cluster as a cubic nano-cluster,
with a size of 13 × 13 × 13 KCl unit cells consisting of polarizable point charges at the lattice
sites, excluding those of the cluster of ions.

This nano-cluster is divided in two regions. The first region is spherical and has a radius
of 2.87a0. Apart from the Coulomb interaction the charges in this region interact with each
other and the ions of the cluster using a Buckingham potential for the repulsion between any
atom pair:

V = A exp(−r/r0) − C/r6 (1)

where r is the distance between the atoms.
The shell parameters for simulating the polarization are the spring constant k in the

expression E = 0.5kx2 and the values of the core and the shell charges qc and qs , a distance
x apart. These constants and those of the Buckingham potential were taken from [11] and are
listed in table 1.

Table 1. Pair potential parameters and spring constants of the lattice shell model for pure KCl [11].

A r0 C k

Ion1 Ion2 (eV) (Å) (eV Å−6) (eV Å−2) qc qs

K K 6.172 × 109 0.1085 36.22 484.82 6.96 −5.96
Cl Cl 3361.0 0.3564 193.92 31.33 1.653 −2.653
K Cl 4853.0 0.3080 80.64

The total energy of the ionic cluster and the charges of region I is minimized with respect
to the electronic and positional parameters of the ionic cluster and the charges.
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The second region consists of all point charges outside the first region. Here the point
charges are fixed and can not polarize. They serve to approximate the potential of the infinite
crystal up to a constant. Further details about the approach can be found in [7] and [8].

In the HF–LCAO cluster calculation we have used the following Gaussian basis sets. For
thallium and indium 21 electron relativistic ECP bases [12] were taken. For chlorine a seven
electron ECP basis was used, the CEP-121G of the g98 package and an all electron 4333/43
basis was chosen for potassium.

The 21 electron bases for thallium and indium proved to be the best choice compared
to earlier used 13 electron bases. The larger flexibility of these bases causes a larger inward
movement of four of the six nearest neighbour chlorine ions on relaxation and so the Stokes
shift increases.

The ns2 ground state of the dopant ion is found from a ground state calculation of the
cluster fragment.

To obtain the right relaxation in the triplet state it is mandatory to start already with a
slight elongation along the z axis, because otherwise no pure occupation of the npz orbital is
realized.

For the supercell calculation use has been made of the package VASP [13]. We have used
the ultrasoft pseudo-potentials of Kresse and Haffner [14] supplied with the program. Exchange
and correlation were treated in the generalized gradient approximation (GGA), based on the
parametrization by Perdew and Zunger [15] of the local-density functional of Ceperley and
Alder [16] with the gradient corrections following Perdew and Wang [17] (PW91).

We had a [Kr] core for indium, a [Xe]4f14 core for thallium, both with a d10s2p1 valence
configuration, a [Ne] core for chlorine with a 3s23p5 valence shell and a [Mg] core for potassium
with a 3p64s electron configuration.

The kinetic energy cutoff was chosen to be 219.5 eV for the plane-wave representation
of the wavefunctions and 600.0 eV for the augmentation charge density. Because of the very
time consuming calculations the supercell was chosen to be a block of 3 × 3 × 3 unit cells and
only one k-point was taken, the gamma point. The calculations were done for up-spin as well
as down-spin orbitals.

The calculations for the ns2 ground state are straightforward, but those of the excited
triplet state are more elaborate. We had to excite a down-spin electron in the 5s (6s) band to
the lowest up-spin 5p (6p) band. This is usually not easy with a band structure calculation.
However because of the localized nature of the bands of interest and the fact that only one
k-point was taken, this could be accomplished using standard options in the program. Again
the relaxation was started with a small elongation in the z direction, because otherwise the
correct np orbital would not be occupied.

Next, details are given about the parameter model for including spin–orbit interaction and
modelling the Jahn–Teller coupling.

2.3. Model for the nsnp configuration interacting with the lattice

Several authors have published the solution of the Hamiltonian equation of the 12 states of
the nsnp configuration interacting with the lattice. We will use equations of [4], somewhat
extended to serve our purpose.

The key Hamiltonian is written as follows.

H = H0 + Hls + Helast + Hjt (2)

H0 = −h̄2/2m∇2 + V (r) (3)

Hls = λ(l1 · s1 + l2 · s2) (4)
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Helast = 0.5Kε(Q
2
3 + Q2

2) (5)

Hjt = b(Q2 + Q3/
√

3). (6)

H0 is the one-electron model Hamiltonian of the lattice relaxation model mentioned above,
i.e. Hartree–Fock in case of the cluster calculations and DFT for the supercell band structure
approach.

The spin–orbit term Hls shows the spin–orbit interaction of the ns and the np electron.
The elastic Hamiltonian Helast contains the operators Q2 and Q3, which work on the x, y
and z components of the orbital triplet terms of the nsnp configuration. The eigenvalues are
expressed in terms of the distortion coordinates q2 and q3 [18] of the Cl6 fragment around the
dopant ion. If we denote the displacements of the three chlorine neighbours on the positive
axes by dx, dy and dz, we have q2 = dx− dy and q3 = 1/

√
3(2dz− (dx + dy)). The notation

is such that for q2, dy has to be −dx and for q3 both dx and dy have to be equal to − 1
2 dz.

In this way the volume is kept constant. The displacement of the ions on the negative axes is
included in this notation [18]. The parameter Kε will be a result of our relaxation study.

The Jahn–Teller Hamiltonian Hjt describes the first order coupling of the np orbitals
with the distortion coordinates q2 and q3. The constant b is the coupling parameter we will
determine from our calculations.

The three orbital and four spin combinations of the nsnp configurations can be combined
in 12 basis functions in terms of which the Hamilton matrix blocks out into four 3×3 matrices.

It is quite common to transform to a dimensionless form by introducing the variables
x2,3 = −b/(2

√
3λ)q2,3, A = 6λKε/b

2 and g = G/λ.
G is half the triplet–singlet splitting with neglect of spin–orbit interaction.
There are essentially three matrices which describe the properties of the levels as a function

of the parameters A, λ and G. The first one, shown in equation (7), gives the position of
the singlet 3A1u (3P0) and the doublet 3Eu (3P2) levels. We have simplified the expression
by setting x2 = 0, because there is good evidence thallium and indium in KCl show only
tetragonal distortions and so x2 is not required.

H1 = E0I + λ

(
Ax2

3 + 2x3 −0.5 −0.5
−0.5 Ax2

3 + 2x3 −0.5
−0.5 −0.5 Ax2

3 − 4x3

)
. (7)

E0 is the energy of the triplet state without spin–orbit interaction and without distortion
(x3 = 0). This parameter follows from the relaxation studies but is not used further.

There are minima for positive and negative x3. For our case the one for positive x3 is most
pronounced and gives the 3A1u level. If x2 is included other minima exist, with the tetragonal
distortion directed along the other axes. A peculiar aspect of (7) is the counterbalance between
the effect of spin–orbit interaction represented by the numbers 0.5 and the relaxation term with
the x3 parameter. Actually the larger x3 the smaller is the effect of the spin–orbit interaction
because of the increasing distance to the 3E1u level.

The second and third matrices, shown in equations (8) and (9), give the behaviour of
the 3T1u (3P1), 3T2u (3P2) and the 1T1u (1P1) levels. If we include the x2 coordinate the two
equations are equivalent.

H2 = E0I + λ

(
Ax2

3 + 2x3 0.5 −0.5i
0.5 Ax2

3 + 2x3 0.5i
0.5i −0.5i Ax2

3 − 4x3 + 2g

)
(8)

H3 = E0I + λ

(
Ax2

3 + 2x3 0.5 −0.5i
0.5 Ax2

3 − 4x3 0.5i
0.5i −0.5i Ax2

3 + 2x3 + 2g

)
. (9)
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The most important feature of these equations is that there is a deep minimum of the 3T1u

state for positive x3 (equation (9)), more or less at the same value as for the 3A1u level of
equation (7). The 3T1u state is the emitting and 3A1u the trapping level in the physics of the
emission.

The equations given above are very helpful for analysing the emission spectrum. However
the mixing of the dopant orbitals with the ligands is neglected. It is assumed that the parameters
G and λ can take this into account if we extract these from the absorption lines. In the following
section one can see that this leads to a value of G which is much smaller than that of the free
ion and also λ is reduced.

Because in our relaxation study λ is zero, the behaviour of the minimum of the 3T1u state
is simple and we can derive the following equations for the variables b and Kε expressed in
terms of the resulting relaxation.

If the lowering of the triplet state by relaxation from the unrelaxed (ns2) geometry to the
relaxed geometry is Erelax and the corresponding lattice distortion is q3 we have

b =
√

3Erelax/q3 (10)

Kε = −2Erelax/q
2
3 . (11)

The usefulness of the quadratic expression of the relaxation with a single distortion coordinate
was thoroughly tested. Actually there is a contribution of the breathing mode coordinate q1,
but the influence was found to be negligible.

3. Results

3.1. Ab initio energy levels of Tl+ in KCl

In order to perform a test on the usefulness of the model explained above for a heavy ion
like thallium we give results of a comparison of ab initio energy levels of Tl+ in KCl in the
undistorted geometry with those of the absorption experiments. The method we have used
is the fully relativistic Dirac–Fock LCAO method implemented in the code MOLFDIR [19].
The spin–orbit interaction is now included in the right way. Limited configuration interaction
(cosci) was done on the 6s6p configuration. Unfortunately no relaxation can be studied with
this code.

In table 2 the results are listed of energy levels of Tl+ calculated with the Dirac–Fock code
and with the parameter model described above. The parameters λ, G and E0 were obtained
from the second, third and fourth 6s6p energy level. These parameters are not enough for
matching all levels. The mismatch for the first level (3A1u) in the table gives an indication of
the model error. It is a result of relativistic effects which result in two 6p orbitals, one for 6p1/2

and one for 6p3/2, and this is not accounted for in the parameter model.
For a reasonable fit to the experimental values, particularly the value of G has to be

readjusted to a much smaller value. This is due to charge transfer from the chlorine ions to
the empty 6s levels. This decreases the triplet-singlet splitting considerably. The final values
G = 0.28 eV and λ = 0.69 eV are in reasonable agreement with the values given in [5].
The spin–orbit parameter is found to be only slightly smaller than that from the Dirac–Fock
calculation.

The MOLFDIR calculation does not include correlation effects and so the charge transfer
mentioned above is not large enough. The interaction with the conduction band levels, included
in a CI calculation, is assumed to bridge the gap. No attempt was done to do this, because our
main issue is the behaviour of the triplet levels and the influence of lattice relaxation.
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Table 2. Comparison of ab initio energy levels of Tl+ in KCl, obtained with the MOLFDIR code,
with results of the parameter model and with experiment. The notation A, B and C refers to the
nomenclature of the absorption lines. All values are in eV.

Parameter model
MOLFDIR
levels Model levels Fit to experiment

Parameters
E0 — 5.30 5.58
λ — 0.78 0.69
G — 1.03 0.28

Levels
6s 0 0 0
6s6p
3A1u 4.43 4.52 —
3T1u (A) 4.79 4.79 5.03
3T2u, 3Eu (B) 5.69 5.69 5.93
1T1u (C) 7.48 7.48 6.36

Figure 1. Jahn–Teller distortion of the local environment
of a Tl+ or In+ dopant excited to the nsnp configuration.
Up to the fourth neighbour ring is shown. The relaxation
shows the actual distortion for the In+ defect.

3.2. Lattice relaxation studies of the nsnp levels of Tl+ and In+ in KCl

3.2.1. Supercell approach. There are two types of relaxation. The first one is for the ns2

ground state with only radial relaxation. The symmetry remains cubic. The second one, for
the nsnp state, is shown in figure 1, where the neighbours up the fourth shell are indicated.
There is an elongation in the z direction and a contraction in the x and y directions. The
occupied np orbital has to be the npz orbital. This last point is crucial. With a band structure
approach like that used in VASP this is not a simple matter in general because of the Bloch-type
wavefunctions. By taking only the gamma point in the first Brillouin zone, the particular band
can be occupied by applying already at the start of the relaxation a slight tetragonal distortion.
After inspecting the character of the bands the right occupation could be obtained.

The supercell was chosen in two ways. First a 2×2×2 unit block with 64 ions was taken,
so that the neighbours up to the third shell were able to relax to a certain extent, but actually it
is a direct neighbour relaxation. A much more realistic supercell is the 3 × 3 × 3 block with
216 ions, because now the potassium neighbours on the x, y and z axes, which feel directly the
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Table 3. Results of lattice relaxation around a Tl+ centre in KCl calculated with the supercell
approach. Thallium is in the 6s6p triplet state. Positions are given in terms of the lattice constant,
which was found from the optimized geometry to be 6.3137 Å. Up to the fifth neighbour shell is
shown. The supercell was a 3 × 3 × 3 unit. The numbers in bold case are those with the largest
relaxation. The start positions are those of the relaxed geometry for the ground 6s2 state.

x, y, z start positions
Ion Shell (6s2 end positions) x, y, z end positions

Cl 1 0.505 57 0.0 0.0 0.472 79 0.0 0.0
0.0 0.0 0.505 57 0.0 0.0 0.56 324

3 0.499 74 0.499 74 0.499 74 0.500 89 0.500 89 0.497 69
5 0.0 0.499 92 1.000 12 0.0 0.503 85 1.004 33

1.000 12 0.499 92 0.0 0.995 60 0.496 65 0.0
1.000 12 0.0 0.499 92 0.998 83 0.0 0.497 55

K 2 0.499 82 0.499 82 0.0 0.500 45 0.500 45 0.0
0.499 82 0.0 0.499 82 0.487 61 0.0 0.503 46

4 1.00021 0.0 0.0 0.99821 0.0 0.0
0.0 0.0 1.000 21 0.0 0.0 1.026 92

Table 4. Energy level parameters of Tl+ and In+ in KCl using the supercell approach.

E0 Erelax q3 b Kε Kns

Dopant (eV) (eV) (Å) (eV Å−1) (eV Å−2) (eV Å−2)

Tl 4.90 −0.296 0.659 −0.778 1.36 1.81
In 4.09 −0.408 0.699 −1.01 1.67 1.97

movement of the six nearest neighbours, are able to relax. For the latter supercell the direct
relaxation results for thallium in the 6s6p triplet state are given in table 3. We have reduced
the information as much as possible, taking into account the tetragonal D4h symmetry. Up to
the fifth neighbour shell is documented. The lattice constant was found from the optimized
geometry of pure KCl. The value 6.3137 Å is very near the value 6.2916 Å found from x-ray
analysis. The energy change of the supercell by relaxation was found to be −0.296 eV. For
the 2 × 2 × 2 cell a value of −0.231 eV was calculated. The corresponding q3 values were
0.659 and 0.461 Å respectively.

The data for indium are similar; the relaxation however is somewhat larger.
The results for the different parameters required for calculating the energy levels are

tabulated in table 4. The E0 parameter directly results from the energy difference between
the nsnp state and the ns2 state in the ns2 optimized geometry. Erelax and q3 result from the
relaxation study and then b and K are calculated using equations (10) and (11).

The variable Kns parametrizes the energy dependence of the ground state energy on the
distortion coordinate q3 in the form E = 0.5Knsq

2
3 .

3.2.2. Embedded cluster approach. As was mentioned in the foregoing section the main
cluster of ions consisted of the dopant ion, its six nearest and 12 next nearest neighbours.
Considering the way of relaxation which is dominated by displacements of the ions on the x,
y and z axes, the six potassium ions at one lattice unit (a0) and the six chlorine ions at one and
a half lattice units were added. The rest of the lattice in a block of 13 × 13 × 13 lattice units
was represented by point charges. The charges interact with the cluster and each other using
a Buckingham potential of which those in a sphere of 2.87 a0 can relax and polarize.

Different basis sets were employed and those with the largest relaxation were chosen. It
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Table 5. Results of lattice relaxation around a Tl+ centre in KCl calculated with the embedded
cluster approach. Thallium is in the 6s6p triplet state. Positions are given in terms of the lattice
constant, which was found from the optimized geometry to be 6.2422 Å. Up to the fifth neighbour
shell is shown. The seventh shell is shown also because of the unexpected large relaxation of the
chlorine ions on the axes. The relaxing region was a sphere with a radius of 2.87 lattice unit.
The numbers in bold case have the largest relaxation. The start positions are those of the relaxed
geometry for the ground 6s2 state.

x, y, z start positions
Ion Shell (6s2 end positions) x, y, z end positions

Cl 1 0.523 42 0.0 0.0 0.480 17 0.0 0.0
0.0 0.0 0.523 42 0.0 0.0 0.584 38

3 0.502 40 0.502 40 0.502 40 0.503 29 0.503 29 0.500 72
5 0.0 0.502 09 1.0101 0.0 0.506 42 1.019 44

1.0101 0.502 09 0.0 1.006 80 0.498 92 0.0
1.0101 0.0 0.502 09 1.000 04 0.0 0.498 75

K 2 0.514 01 0.514 01 0.0 0.513 03 0.513 03 0.0
0.514 01 0.0 0.514 01 0.499 85 0.0 0.520 88

4 1.017 22 0.0 0.0 1.0 0.0 0.0
0.0 0.0 1.017 22 0.0 0.0 1.052 56

Ct 7 0.0 0.0 1.521 67 0.0 0.0 1.540 74
1.521 67 0.0 0.0 1.513 06 0.0 0.0
1.000 69 1.000 69 0.500 01 1.000 90 1.000 90 0.499 335
0.500 01 1.000 69 1.000 69 0.500 18 1.001 02 1.000 88

Table 6. Energy level parameters of Tl+ and In+ in KCl using the embedded cluster approach.

E0 Erelax q3 b Kε Kns

Ion (eV) (eV) (Å) (eV Å−1) (eV Å−2) (eV Å−2)

Tl 5.19 −0.603 0.751 −1.39 2.14 2.39
In 3.74 −0.676 0.841 −1.39 1.91 2.03

appeared that the effective core of the dopant ion should be as small as possible and so we
have chosen a 21 valence electrons flexible ECP basis, as was mentioned above. Also d-type
polarization functions on the chlorine ions were added.

In table 5 the results are given of typical relaxations in the nsnp state. Table 6 lists the
parameters obtained from these studies. Important in a comparison with the results of the
supercell approach is that different levels of relaxation were used. It would take us too long if
this were also documented. An important conclusion was that the relaxation of the ions outside
the ones shown in table 5 contributed around 0.05 eV. So this is rather small. The relaxation
of just the nearest neighbours gives only half the value of table 5. As was mentioned already,
the relaxation is very much dominated by the displacements of the ions on the x, y and z axes.
Note the fact that the chlorines in the seventh shell at 1.5 a0 move around 0.2 Å which is still
comparable with the displacement of the potassium ions at a0.

It is evident that the relaxation obtained with the supercell method is comparable with
that of the cluster method only with respect to the geometry. The energy gain Erelax (see
tables 4 and 6) is however very different, particularly for thallium, where we find a factor of
two disagreement.

There are two reasons for this. The first one is the effect of the periodic boundary
conditions, which limits the displacement of the ions at larger distance. It is not practical
to choose a much larger supercell than the one we have taken.
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Figure 2. 6s2 and 6s6p triplet levels for thallium as a function of the tetragonal x3 distortion
coordinate. A double y axis is used for viewing the curves with equal precision. Results are given
for the supercell approach using the VASP code and the cluster model with the Dcluster99 program.
Absorption is supposed to occur at x3 = 0 from 1A1g(6s2) to 3T1u (6s6p). Subsequently this level
depopulates to 3A1u by phonons. In this state the system relaxes to the minimum and emission
by thermal excitation takes the system back to 1A1g . On can see that this does not happen for the
supercell calculation.

Another more important reason is the pseudo-potential used in the approach. The DFT
form of the potentials and the fact that we have only a 13-electron basis for the dopant ion,
are assumed to be the main reasons for the disagreement. Particularly the thallium potential
seems to be too soft.

An estimate of the effect of including the inner 5s5p shells in the pseudo-potential core
is around 0.1 eV and the effect of the boundary conditions is roughly 0.05 eV, as was
mentioned earlier. The resulting 0.15 eV partially bridges the gap between the results of
the two approaches. The mismatch of around 0.15 eV is very likely a limitation of the form
of the ultrasoft pseudo-potential.

3.2.3. Level positions. We will now investigate the positions of the lowest levels of the dopant
ion as a function of the x3 coordinate using the model presented in section 2. In this way we
can estimate the emission behaviour of the centre. The Stokes shift and the position of the
trapping 3A1u level with regards to the emitting 3T1u level are the interesting quantities.

It is straightforward to obtain the curves of level position versus the x3 coordinate for the
thallium and indium centre using equations (7), (8) and (9).

This is done for the supercell as well as the cluster method. Comparing results of the
two approaches best shows the delicate balance between energy gain by lattice relaxation and
energy loss by the quenching of the spin–orbit interaction as was explained above in relation
to equation (7). In figure 2 the results are shown of the thallium ion and in figure 3 those of
the indium ion.

For thallium one can see that for the supercell approach there is no Jahn–Teller distortion
at all, because the trapping level goes up as a function of the x3 coordinate. There is a small
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Figure 3. 5s2 and 5s5p triplet levels as a function of the tetragonal x3 distortion coordinate. A
doubley axis is used for viewing both curves with equal precision. Results are given for the supercell
approach using the VASP code and the cluster model with the dcluster99 program. Absorption is
supposed to occur at x3 = 0 from 1A1g(5s2) to 3T1u(5s5p). Subsequently this level depopulates
to 3A1u by phonons. In this state the system relaxes to the minimum and emission by thermal
excitation takes the system back to 1A1g .

minimum in the 3T1u 6s6p level curve but the population would be much too small. The Stokes
shift would be of the order of 0.1 eV.

The cluster results however show a pronounced minimum in the 3A1u curve. We see
clearly the role of the trapping level 3A1u. At zero distortion the distance to the 3T1u level
is much too large to explain the measured decay time dependence on temperature. However
as the distortion increases the two levels approach each other and at the minimum the energy
difference is around 0.02 eV, which is comparable with the value of 0.05 eV found from
experiment [20, 21]. We mentioned above that the parameter model underestimates the energy
difference between these two levels (see table 2) and so this may explain the disagreement.

The Stokes shift was calculated from the minimum in the 3T1u curve and the corresponding
energy change in the 6s curve (0.496 eV). The value of 0.706 eV compares reasonably well
with the value of 0.88 eV found experimentally [22].

Now we turn to the indium case shown in figure 3. In this case the supercell as well as the
cluster model show clear minima of the 3A1u and 3T1u curves. The only difference is the depth
and position in x3 space of the minima. For the supercell the Stokes shift amounts to 0.765 eV
and for the cluster calculation one obtains 1.247 eV. The experimental value is 1.44 eV [23].

Again the cluster result is around 20% smaller than the experimental value. The fact that
here also the supercell approach gives a Jahn–Teller distortion is because there is hardly any
competition between the spin–orbit interaction and the lattice relaxation. This is because the
spin–orbit interaction it is less than half that [5] in the thallium case. Another important feature
of figure 3 is the extremely small energy difference between the 3A1u and 3T1u curves in the
neighbourhood of the minima. Because of this there would be no temperature dependence of
the decay time of the emission line, in agreement with experiment.
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Table 7. Comparison of results of the embedded cluster calculation for the Stokes shift and intrinsic
decay time of the emission lines of Tl+ and In+ in KCl. Also the position of the trapping level 3A1u
with regard to the 3T1u level is tabulated.

Stokes shift Intrinsic decay time Trap depth
(eV) (µs) (eV)

Ion Calc. Exp. Calc. Exp. Calc. Exp.

Tl 0.706 0.88a 0.09 0.1b −0.021 −0.05b

In 1.247 1.44c 2.9 3d 0.0003 —

a [22] for the emission line. The absorption line (A) is found from table 2.
b [23] for the emission and [5] for absorption.
c [21].
d [3].

3.2.4. Decay time. It is interesting to calculate the decay time of the 3T1u level to the ground
1A1g (6s2) level from values for the mixing coefficients of the 1T1u state in 3T1u and compare
these with experiment. These are the so-called intrinsic decay times. The mixing depends
on the Jahn–Teller distortion because of the shifting of levels. Only the cluster results are
considered here.

We have used the following equation for the evaluation of the decay time [24].

A = 4n(n + 2)2e2ω3/(27h̄c3)〈ns|z|npz〉2α2
s . (12)

A is the transition probability per second, n the refractive index (n = 1.5), ω is the frequency
of the transition and αs as the triplet-singlet mixing coefficient. The dipole element 〈ns|z|npz〉
has the value 1.32 Å for thallium and 1.39 Å for indium, evaluated for the free ion. The mixing
coefficient was found to be 0.167 for thallium and 0.048 for indium.

Table 7 gives an overview of our results on the Stokes shift and intrinsic decay times of
the np–ns transition of thallium and indium in KCl compared with experiment.

4. Discussion and conclusions

The heavy thallium ion with the strong spin–orbit interaction has been found to be a critical
case for lattice relaxation studies. Generally speaking lattice relaxation suffers from a lack of
accurate experimental data to support the approach taken. In our case we have the effect of spin–
orbit coupling which restrains the lattice relaxation of the Jahn–Teller effect. For the widely
used approach of the supercell model in the DFT formulation of electron interaction the lattice
relaxation is only half the size needed to balance the quenching of the spin–orbit interaction.
Curiously enough the relaxation itself, i.e. the displacement, is of the right magnitude.

The fact that an excited state is considered, which is found to be in the conduction band of
the KCl crystal, appears to be not directly responsible. This is because it was found that there
is no mixing between the levels of interest and the nearest conduction band levels, a result of
taking only the gamma point in k-space. In our opinion the pseudo-potentials are responsible
for the mismatch.

The embedded cluster method in the HF–LCAO formulation of electron interaction is
much more successful. However a lot of effort had to be spent in optimizing the basis set for
obtaining the nice results we have presented above. It appears that for thallium the best model is
an all electron model of the dopant ion in Dirac–Fock formulation of electron interactions. The
parameter model explained above is very useful but limitations were found in the prediction
of the level positions, in particular the 3A1u level.
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The main profit of the embedded cluster model is the fact that we can put to relaxation
thousands of ions, a task which is prohibitively time consuming in a pure HF–LCAO treatment
of a part of the crystal large enough for obtaining a realistic relaxation. However most of the
relaxing ions are classical point charge ions and so the wavefunctions in this part of the crystal
are useless, but very likely this is not serious.

We have found that the usual practice of relaxing only the direct neighbours only amounts
to half the final result. The relaxation region has to contain at least the fourth neighbour shells
and has to feel the right repulsive forces with the fixed region. In our calculation we have
chosen the relaxing region much larger, but this adds only some 10% to the final relaxation
energy. The role of polarization in the embedding part was found to be almost negligible.
However is has been found that it is important to add polarization functions of d-type to the
basis set of the chlorine neighbours in the quantum chemical cluster part of the calculation.
The results obtained for the Stokes shift and lifetimes and the support for the trapping model
for the thallium dopant in KCl are very encouraging.

Our calculation and nice agreement of the decay times is partly fortuitous because the
curves published in the literature do not always agree and the extraction of the decay times
and excitation energy from the curves is not very accurate. But anyhow the agreement appears
to prove the correctness of the model. Our model is completely different from that published
in [25]. The authors do not use the trapping mechanism in explaining the decay times. The
information given seems to point out that a semi-empirical method is used and so a comparison
can not be made.

Many more experimental data are available for similar but more complicated cases. For
instance indium in bcc KCl has two emission lines instead of the one we have treated here.
Also thallium in KBr and KI shows two lines. Even more peculiar, thallium in CsI even shows
three lines [26] if the system is put under pressure. The occurrence of these extra lines is
tentatively explained by assuming the contribution of other minima in space of the normal
coordinates. Also, very likely, in some cases higher order Jahn–Teller effects with additional
coordinates contribute.

Our efforts will continue in the field of this more difficult part of the coupling of the dopant
ion electrons to the lattice.
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